Convolutions of the bi-periodic Fibonacci numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Q-analogues of convolutions of Fibonacci numbers

Let NR([k]) denote the set of words over the alphabet [k] = {1, . . . , k} with no consecutive repeated letters. Given a word w = w1 . . . wn ∈ NR([k]), or more generally in [k]∗, we say that a pair 〈wi, wj〉 matches the μ pattern if i < j, wi < wj, and there is no i < k < j such that wi ≤ wk ≤ wj. We say that 〈wi, wj〉 is a trivial μ-match if wi + 1 = wj and a nontrivial μ-match if wi + 1 < wj. ...

متن کامل

Correction to: On the spectral norms of r-circulant matrices with the bi-periodic Fibonacci and Lucas numbers

*Correspondence: [email protected] Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey 1 Correction In the publication of this article [1], there are a few errors. (1) Page 4, line 4: The statement 1 (ab)m+1 [α 2m+1 + β2m+1 – (–1)m] – 2 should instead read: 1 (ab)m+1 [α 2m+1 + β2m+1] + (–1)m – 2. (2) Page 4, line 6: The statement ( 1 a )lmlm+1 = 1 (ab)m+1 [α ...

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Generating matrix of the bi-periodic Lucas numbers

In this paper, firstly, we introduce the Ql-Generating matrix for the bi-periodic Lucas numbers. Then, by taking into account this matrix representation, we obtain some properties for the bi-periodic Fibonacci and Lucas numbers.

متن کامل

Fibonacci Numbers

One can prove the following three propositions: (1) For all natural numbers m, n holds gcd(m,n) = gcd(m, n + m). (2) For all natural numbers k, m, n such that gcd(k, m) = 1 holds gcd(k,m · n) = gcd(k, n). (3) For every real number s such that s > 0 there exists a natural number n such that n > 0 and 0 < 1 n and 1 n ¬ s. In this article we present several logical schemes. The scheme Fib Ind conc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics

سال: 2019

ISSN: 2651-477X

DOI: 10.15672/hujms.568340